Here we have two implementations of a Gibbs sampler, the first in pure R, the second using Rcpp. Let’s compare and contrast how these are written
gibbs_r <- function(N, thin) {
mat <- matrix(NA, nrow = N, ncol = 2)
x <- 0
y <- 0
for(i in 1:N) {
j <- 0
for(j in 1:thin) {
x <- rgamma(1, 3.0, 1.0 / (y * y + 4));
y <- rnorm(1, 1.0 / (x + 1), 1.0 / sqrt(2 * x + 2));
}
mat[i, 1] <- x; # Note the difference in Indexing
mat[i, 2] <- y;
}
return(mat);
}
This is a straightforward implementation of a Gibbs sampler which involves sampling from conditional distributions repeatedly to generate samples from the target distribution. Why might this perform poorly as a pure R implementation? Profile the code to see what could be going on.
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericMatrix gibbs_cpp(int N, int thin) {
NumericMatrix mat(N, 2);
double x = 0;
double y = 0;
for(int i = 0; i < N; i++) {
for(int j = 0; j < thin; j++) {
x = R::rgamma(3.0, 1.0 / (y * y + 4)); // Rcpp::rgamma is the vectorized version, returns a vector
y = R::rnorm(1.0 / (x + 1), 1.0 / sqrt(2 * x + 2)); // Rcpp::rnorm is the vectorized version, returns a vector
}
mat(i, 0) = x; // Note the difference in Indexing
mat(i, 1) = y;
}
return(mat);
}
The C++ implementation looks almost exactly the same, except for a few differences in indexing and initialization. Now, how do they each perform? Let’s go ahead and run a benchmark comparing the two.
results <- microbenchmark(
gibbs_r = gibbs_r(100, 1000),
gibbs_cpp = gibbs_cpp(100, 1000),
times = 10
)
results
## Unit: milliseconds
## expr min lq mean median uq max
## gibbs_r 472.37406 493.12392 541.83436 499.00573 519.95170 854.55663
## gibbs_cpp 15.23462 15.77395 16.10817 15.91789 16.04142 18.60962
## neval cld
## 10 b
## 10 a
The difference is staggering, the C++ code ends up nearly 40x faster than the pure R implementation. This is an example of why you should avoid for
loops in R.